Laboratory Experiments, Numerical Simulations, and Astronomical Observations of Supersonic Jets in Clumpy Environments

Freddy Hansen (LLNL)

Observational Astronomy: Patrick Hartigan (Rice) - PI

Numerical Simulations: Bernard Wilde and Robert Coker (Los Alamos),

Paula Rosen (AWE), Adam Frank (Rochester),

Robert Carver (Rice), Jacob Palmer (Rice)

Laboratory Experiments: John Foster (AWE), Freddy Hansen (LLNL), Brent Blue (GA), Robin Williams (AWE)

Motivation

- To gain a better understanding of stellar jets by combining:
 - Laboratory Experiments
 - Numerical Simulations
 - Astronomical Observations
- Code Validation and Extension (AstroBEAR, RAGE and PETRA)
- A truly multidisciplinary project (Los Alamos numerical modelers travel to telescopes to observe; astronomers present at Omega laser shots)
- Involve Ph.D. thesis students in NNSA-related research

Project Outline

Experimental

 Develop OMEGA Laser shots that are analogs to shock waves in stellar jets

Numerical

- RAGE and PETRA to support target design, and AstroBEAR to model astronomical observations
- Extend the codes so they can work on each other's problems

Astronomical

- Multi-epoch emission line images from HST to follow proper motions and make movies to compare with simulations
- Ground-based radial velocity maps of extended sources to measure internal motion `datacubes' and develop methods for comparing these to simulations

Talk Outline

- I. Overview of Stellar Jets
 - (a) Radiative Shocks (Astronomical Definition)
 - (b) Observational Parameters
- II. Omega Laser Shots
 - (a) Scaling
 - (b) Target Design
 - (c) Results from Shots
- III. Numerical Simulations
 - (a) Extend RAGE to work on astrophysical problems
 - (b) Extend Astrobear to design laser experiments
 - (c) Creating a postprocessing code to enable codes to predict emission-line images to compare with astronomical observations
- IV. Astronomical Observations
 - (a) Current HST project
 - (b) Slit-mapping radial velocities from Kitt-Peak

Overview of Stellar Jets

Radiative Shock: One that cools by emitting photons that escape

Layer of Collisionally-excited H @ shock

Entire Cooling Zone is optically thin to optical and IR photons

Emission Lines give Doppler velocities, line ratios give temperature and density

Bow Shock/Mach Disk Structures

Reipurth & Heathcote1992 A&A 257, 693

Hartigan 1989 ApJ 339, 987

Heathcote etal 1996

ntroduction

HH 110

HH 47

Typical Jet Parameters

Velocity: 100-500 km/s

Width: Typically 100 AU (1.5x10¹⁰ km) @ d=1000 AU

Length: Can extend out to 1 pc (10¹³ km)

Opening Angle: 2-20 degrees Density: 10⁴ cm⁻³ (10⁻²⁰ g cm⁻³)

Composition: Cosmic, i.e. mostly H

Ionization Fraction: 2% - 20%

Differential Knot Velocity: 30-50 km/s

Magnetic Field: Poorly known. < 1mG at large distances

stronger closer to source

Main point: Multiple, nested bow shocks from velocity variability. Internal shocks heat jet. Jets are clumpy

Observations: Emission line radiation gives density, temperature, radial velocity. Proper motions visible over several year timespan

- I. Overview of Stellar Jets
 - (a) Radiative Shocks (Astronomical Definition)
 - (b) Observational Parameters
- II. Omega Laser Shots
 - (a) Scaling
 - (b) Target Design
 - (c) Results from Shots
- III. Numerical Simulations
 - (a) Extend RAGE to work on astrophysical problems
 - (b) Extend Astrobear to design laser experiments
 - (c) Creating a postprocessing code to enable codes to predict emission-line images to compare with astronomical observations
- IV. Astronomical Observations
 - (a) Current HST project
 - (b) Slit-mapping radial velocities from Kitt-Peak

What can we learn about an object such as HH 110 (left) using laboratory experiments such as those on Omega (right)?

Astrophysical Scaling

- Some questions require controllable and repeatable 3D experiments and simulations to answer
- If 'similar enough', then an experiment will behave in the 'same way' as an astrophysical object
- Need to *define* similarity and find what *aspects* of the two systems will behave in the same fashion
- Example: self-similarity, where the solution to a problem does not depend *explicitly* on all variables but on a *combination* of them (Sedov, conduction)

Dimensionless Numbers

Ryutov, D. et al. 2000

■ Two systems with the same Euler (~Mach) number (and scaled initial conditions and boundary conditions) will behave identically

$$Eu = v\sqrt{\frac{\rho}{p}}$$

- Experiments are Euler-scaled but not coolingscaled
- Easier to scale from experiment to astrophysical object than the other way around

Scaling Example: YSO jet

- Mach 30; P~10⁻⁹ dyne/cm²; ρ~1x10⁻²¹ g/cc
- Omega laser limit ~10¹¹ dyne/cm²
- Constant Eu

 choice of v or ρ (usually the latter is more controllable but with less dynamic range)
- Pick $\rho \sim 1$ g/cc \rightarrow v $\sim Eu\sqrt{(P/\rho)} \sim 100$ km/s
- Temporal and spatial scales also limited by Omega laser facility
- Pick ~100 μ m \rightarrow t ~ L $\sqrt{(\rho/P)}$) ~ 50 ns to model the jet evolution for ~100 years

Omega Laser Targets

Target Metrology

Optical

X-Ray

Targets require precise manufacturing

e.g. Don't want details of shape of hole to dominate results

Experimental Design

- 12 beams ablate the gold hohlraum walls producing a pressure pulse towards the target to the right
- Plug of material flies down empty region, breaks out into the foam, and is imaged in X-ray
- Point-projection X-ray backlighters and fast, gated framing cameras image the experiment

Data & Simulation Images

300 μ m impact parameter, 6.7 keV backlight, t = 200 ns

High resolution required to get 'mixing' right (as expected due to low *Re*)

But even low resolution simulations get much of the large-scale structure right. Lack of knowledge of initial conditions and the laser drive prevent small-scale structure modelling.

3D RAGE simulation (3 μm resolution) of jet deflection by 1000 μm diameter ball embedded in foam with impact parameter of 500 μm .

Fe backlighter from 40 to 200 ns at 0 degrees

Fe backlighter at 200 ns every 10 degrees

Fe backlighter Data at 200 ns

Experimental Results(Jet deflecting from obstacle)

250 microns @ 200 ns

350 microns @ 150 ns

500 microns @ 200 ns

Different backlighter X-ray energies

Jet after 200 ns of evolution asseen with both a Ti and V

backlighter

Ti backlighter

BL Drive: 2803 J

T = 200 ns

V backlighter

BL Drive 2171 J

Next set of experiments Widnall unstable

Should go 3D: width ~30 µm (~20 resolution elements)

- I. Overview of Stellar Jets
 - (a) Radiative Shocks (Astronomical Definition)
 - (b) Observational Parameters
- II. Omega Laser Shots
 - (a) Scaling
 - (b) Target Design
 - (c) Results from Shots
- III. Numerical Simulations
 - (a) Extend RAGE to work on astrophysical problems
 - (b) Extend Astrobear to design laser experiments
 - (c) Creating a postprocessing code to enable codes to predict emission-line images to compare with astronomical observations
- IV. Astronomical Observations
 - (a) Current HST project
 - (b) Slit-mapping radial velocities from Kitt-Peak

The Omega Experiments are part of a large V&V Program

- Aid in benchmarking various radiation hydrodynamic codes:
 - LANL: LASNEX, RAGE
 - AWE: NYM, PETRA, TURMOIL, HYDRA
 - U. of Chicago: ALLA, FLASH
- Example: Radiation Adaptive Grid Eulerian
 - Godunov hydro (no artificial viscosity, just numerical...)
 - Implicit 2T radiation diffusion
 - CAMR

Experiments illustrated a bug concerning shocks that converge at r=0 in RZ

An experiment that shows what the codes can and cannot do is the best of all experiments...

Code Validation

If you can model experiment A well, you will have more confidence in modelling astrophysical system B (more similar \rightarrow more confidence)

Hohlraumdriven experiment without a ball

Pedestal

RAGE Simulations of experiments qualitatively resemble other simulations of HH 110/270

Why Use AstroBEAR?

- AstroBEAR is a 2-D or 3-D AMR code designed specifically for use on astrophysical systems to capture and follow shocks
- AstroBEAR has magnetic fields already available
- Freely available code for use in the astrophysical community

Problems with applying AstroBEAR to Laser Sims

- Does not handle different types of material within the same simulation
- No built-in laser deposition function
- Uses an ideal gas law to calculate the pressure and sound speed, thus creating EOS Issues

Sounds Like a Student Project! (R. Carver, Rice Ph.D)

Goal:

Enable AstroBEAR to model laser experiments:

- Calculated the pressure and its derivatives using the SESAME tables provided by Los Alamos National Lab.
- Incorporating the ability to track multiple materials within the same simulation
- Calculated the opacities using the SESAME tables to help simulate the actual radiographs obtained during laboratory experiments
- Adding radiation transport capability to better simulate the laser deposition

...But To Compare with Astrophysical Images Need To Model Line Cooling

- Must resolve cooling zones of all shocks
- Must follow highly non-LTE processes of collisional excitation, de-excitation, charge exchange and ionization states of all abundant elements
- Should track ionizing photons

Too Hard.

...Instead...

Another Student Project!

(J. Palmer, Rice University)

Develop a `post-processing' code →

Given: density, temperature, H ionization

Predict: emission line images of [S II], [N I], [O I] etc

Use charge exchange (very high cross section) to tie H+/H to N+/N and to O+/O. Then given O/H and N/H abundances, densities and temperatures, solve for non-LTE level populations for O I, O II, N I, N II and S II, which then gives radiation rate

Being applied to both RAGE and AstroBEAR

Note: Post-process emission line maps do not affect hydro results

(sims include cooling)

- I. Overview of Stellar Jets
 - (a) Radiative Shocks (Astronomical Definition)
 - (b) Observational Parameters
- II. Omega Laser Shots
 - (a) Scaling
 - (b) Target Design
 - (c) Results from Shots
- III. Numerical Simulations
 - (a) Extend RAGE to work on astrophysical problems
 - (b) Extend Astrobear to design laser experiments
 - (c) Creating a postprocessing code to enable codes to predict emission-line images to compare with astronomical observations
- IV. Astronomical Observations
 - (a) Current HST project
 - (b) Slit-mapping radial velocities from Kitt-Peak

HST project to obtain 3rd epoch to follow instabilities, clumps, and shear

3 targets: HH 1&2, HH 34, HH47 Data to be taken August 2007 – January 2008

Kitt Peak 4-m spectral mapping to quantify supersonic turbulence in wake of a deflected jet

Principal Component Analysis EI-1 HH 1 Hα Echelle Slit Map KPNO 4-m 12/06 Eigenimages and Eigenvectors EV 1 EV 4 <u>nambana dan malama panabana dan malama dan m</u> EV 2 EV 5 EV 3 EV 6 EI-6 Radial Velocity (km/s)

Summary

- We have a truly multidisciplinary project leading to better understanding of stellar jets by combining:
 - Laboratory Experiments
 - Numerical Simulations
 - Astronomical Observations